

Supplementary materials

REVISED
10/10/00

Experimental Details and Compound Characterization

1. General procedures for the preparation of compounds 2-14

To a solution of substrate (1 mmol) in pyridine was added 1.25 equiv of TiCl_4 and catalytic amount of DMAP. The mixture was stirred at 80 °C for 16 h, then cooled down to 0 °C, 2 equiv of imidazole was added, and finally 1.1 equiv of TBDMSCl in DMF was added portion by portion during 2 h. The mixture was stirred at rt overnight, then a premixed benzoyl chloride (2.5 equiv, in entry 1 and 2) or acetic anhydride (3 equiv, in entry 3-7) and pyridine was added. The reaction mixture was stirred at 50 °C overnight, then poured into ice-cold water, extracted with EtOAc . The organic phase was concentrated to dryness with the help of toluene. The residue was subjected to column chromatography on silica gel with petroleum ether/ EtOAc as the eluent (12/1) to give product.

^1H NMR (400 MHz, CDCl_3 , 25 °C, TMS) data: 2. δ -0.15, 0.04 (2 s, 2 x 3 H, $\text{Si}(\text{CH}_3)_2$), 0.62, (s, 9 H, t-Bu), 3.75 (dd, 1 H, $J_{5,6a}$ 1.8, $J_{6a,6b}$ 11.2 Hz, H-6a), 3.84 (dd, 1 H, $J_{5,6b}$ 5.3 Hz, H-6b), 3.98 (ddd, 1 H, H-5), 4.09 (m, 1 H, $\text{CH}_2=\text{CH-CH}_2-$), 4.28 (m, 1 H, $\text{CH}_2=\text{CH-CH}_2-$), 4.38 (dd, 1 H, $J_{2,3}$ 3.5, $J_{3,4}$ 9.4 Hz, H-3), 5.03 (d, 1 H, $J_{1,2}$ 1.4 Hz, H-1), 5.24-5.36 (m, 2 H, $\text{CH}_2=\text{CH-CH}_2-$), 5.40 (dd, 1 H, H-2), 5.73 (t, 1 H, $J_{4,5}$ 9.9 Hz, H-4), 5.91-5.96 (m, 1 H, $\text{CH}_2=\text{CH-CH}_2-$), 7.20-8.30 (m, 25 H, Ph). Anal. Calcd for $\text{C}_{48}\text{H}_{52}\text{O}_8\text{Si}$: C, 73.47; H, 6.63. Found: C, 73.51; H, 6.58.

4. δ -0.15, 0.03 (2 s, 2 x 3 H, $\text{Si}(\text{CH}_3)_2$), 0.62, 1.02 (2 s, 2 x 9 H, t-Bu), 3.46 (s, 3 H, OCH_3), 3.76 (dd, 1 H, $J_{5,6a}$ 1.6, $J_{6a,6b}$ 11.3 Hz, H-6a), 3.85 (dd, 1 H, $J_{5,6b}$ 5.2 Hz, H-6b), 4.09 (ddd, 1 H, H-5), 4.35 (dd, 1 H, $J_{2,3}$ 3.4, $J_{3,4}$ 9.4 Hz, H-3), 4.91 (d, 1 H, $J_{1,2}$ 1.3 Hz, H-1), 5.37 (dd, 1 H, H-2), 5.72 (t, 1 H, $J_{4,5}$ 9.4 Hz, H-4), 7.17-8.15 (m, 20 H, Ph). Anal. Calcd for $\text{C}_{43}\text{H}_{54}\text{O}_8\text{Si}_2$: C, 68.43; H, 7.16. Found: C, 68.50; H, 7.17.

6. δ -0.04, 0.01 (2 s, 2 x 3 H, $\text{Si}(\text{CH}_3)_2$), 0.78 (s, 9 H, t-Bu), 1.70, 2.15 (2 s, 6 H, CH_3CO), 2.96 (dd, 1 H, $J_{5,6a}$ 2.0, $J_{6a,6b}$ 10.5 Hz, H-6a), 3.26 (dd, 1 H, $J_{5,6b}$ 6.86 Hz, H-6b), 3.50 (ddd, 1 H, $J_{4,5}$ 8.9 Hz, H-5), 3.78 (t, 1 H, $J_{2,3}$ 8.9 Hz, H-3), 4.69 (d, 1 H, $J_{1,2}$ 10.1 Hz, H-1), 4.84 (t, 1 H, $J_{3,4}$ 8.9 Hz, H-4), 4.99 (t, 1 H, H-2), 7.20-7.70 (m, 20 H,

Ph). Anal. Calcd for $C_{41}H_{48}O_7SiS$: C, 69.10; H, 6.74. Found: C, 69.14; H, 6.70.

8. δ -0.03, 0.02 (2 s, 2 x 3 H, Si(CH₃)₂), 0.79 (s, 9 H, t-Bu), 0.86 (t, 3 H, CH₃), 1.25-1.37 (m, 10 H, CH₂), 1.60-1.66 (m, 2 H, CH₂), 1.72, 2.09 (2 s, 2 x 3 H, CH₃CO), 3.04 (dd, 1 H, J_{5,6a} 2.3, J_{6a,6b} 10.4 Hz, H-6a), 3.18 (dd, 1 H, J_{5,6b} 6.0 Hz, H-6b), 3.48 (ddd, 1 H, H-5), 3.57 (dt, 1 H, OCH₂), 3.79 (t, 1 H, J_{2,3} = J_{3,4} = 9.2 Hz, H-3), 3.97 (dt, 1 H, OCH₂), 4.41 (d, 1 H, J_{1,2} 8.0 Hz, H-1), 4.95 (t, 1 H, J_{4,5} 9.2 Hz, H-4), 4.97 (dd, 1 H, H-2), 7.22-7.50 (m, 15 H, Ph). Anal. Calcd for $C_{43}H_{60}O_8Si$: C, 70.49; H, 8.20. Found: C, 70.55; H, 8.21.

10. δ 0.07, 0.11 (2 s, 2 x 3 H, Si(CH₃)₂), 0.88 (s, 9 H, t-Bu), 1.72, 2.00 (2 s, 6 H, 2 CH₃CO), 3.10 (dd, 1 H, J_{5,6a} 5.4, J_{6a,6b} 10.4 Hz, H-6a), 3.19 (dd, 1 H, J_{5,6b} 2.0 Hz, H-6b), 3.48 (s, 3 H, OCH₃), 3.82 (dd, 1 H, J_{2,3} 9.6 Hz, H-2), 3.90 (ddd, 1 H, H-5), 4.74 (d, 1 H, J_{1,2} 3.6 Hz, H-1), 4.96 (t, 1 H, J_{4,5} 9.6 Hz, H-4), 5.28 (t, 1 H, J_{3,4} 9.6 Hz, H-3), 7.19-7.45 (m, 15 H, Ph). Anal. Calcd for $C_{36}H_{46}O_8Si$: C, 68.14; H, 7.25. Found: C, 68.20; H, 7.19.

12. δ 0.08, 0.12 (2 s, 2 x 3 H, Si(CH₃)₂), 0.86 (s, 9 H, t-Bu), 1.27, 1.30 (2 dd, 6 H, CH(CH₃)₂), 1.87, 2.06 (2 s, 6 H, CH₃CO), 3.05 (dd, 1 H, J_{5,6a} 7.0, J_{6a,6b} 9.2 Hz, H-6a), 3.19 (dq, 1 H, CH(CH₃)₂), 3.88 (dd, 1 H, J_{5,6b} 6.2 Hz, H-6b), 3.65 (bt, 1 H, J 6.6 Hz, H-5), 3.79 (t, 1 H, J_{2,3} 9.6, J_{3,4} 3.4 Hz, H-3), 4.46 (d, 1 H, J_{1,2} 10.1 Hz, H-1), 5.05 (t, 1 H, H-2), 5.41 (d, 1 H, H-4), 7.20-7.45 (m, 15 H, Ph). Anal. Calcd for $C_{38}H_{50}O_7SiS$: C, 67.26; H, 7.37. Found: C, 67.30; H, 7.36.

2. Preparation of allyl 2,4-di-*O*-benzoyl- α -D-mannopyranoside (16)

Compound **2** (2.5 g, 3.19 mmol) was dissolved into 90% aqueous TFA (15 mL) and the solution was stirred at rt for 4 h. Toluene (50 mL) was added and then the solvents were evaporated *in vacuo* to give a residue, which was purified by a silica gel column chromatography (petroleum ether-EtOAc, 1:1) to give **16** (1.24 g, 91%); ¹H NMR (CDCl₃) δ 3.74 (dd, 1 H, J_{5,6a} 4.1, J_{6a,6b} 12.6 Hz, H-6a), 3.81 (dd, 1 H, J_{5,6b} 2.3 Hz, H-6b), 3.98 (ddd, 1 H, H-5), 4.09 (m, 1 H, CH₂=CH-CH₂-), 4.26 (m, 1 H, CH₂=CH-CH₂-), 4.46 (dd, 1 H, J_{2,3} 3.5, J_{3,4} 9.9 Hz, H-3), 5.10 (d, 1 H, J_{1,2} 1.6 Hz, H-1), 5.25-5.34 (m, 2 H, CH₂=CH-CH₂-), 5.43 (dd, 1 H, H-2), 5.51 (t, 1 H, J_{4,5} 9.9 Hz, H-4), 5.91-5.96 (m, 1 H, CH₂=CH-CH₂-), 7.25-8.10 (m, 10 H, Ph). Anal. Calcd for $C_{23}H_{24}O_8$:

C, 64.48; H, 5.61. Found: C, 64.40; H, 5.66.

3. Preparation of 2,3,4,6-tetra-*O*-benzoyl- α -D-mannopyranosyl-(1 \rightarrow 3)-[2,3,4,6-tetra-*O*-benzoyl- α -D-mannopyranosyl-(1 \rightarrow 6)]-2,4-di-*O*-benzoyl- α -D-mannopyranosyl trichloroacetimidate (**19**)

To a cooled solution (0 °C) of **16** (1.5 g, 3.5 mmol) and **17** (5.45 g, 7.36 mmol) in anhydrous CH₂Cl₂ (50 mL) was added TMSOTf (25 μ L, 0.14 mmol). The mixture was stirred at this temperature for 2 h, and then quenched with Et₃N (2 drops). The solvents were evaporated *in vacuo* to give a residue, which was purified by a silica gel column chromatography (petroleum ether-EtOAc, 1.5:1) to give trisaccharide **18** (4.72 g, 85%).

A solution of **18** (850 mg, 0.54 mmol) in 90% aqueous acetic acid (10 mL) was added NaOAc (177 mg, 2.16 mmol) and PdCl₂ (191 mg, 1.08 mmol). The mixture was stirred at rt overnight and then neutralized with saturated aqueous NaHCO₃. The mixture was extract with CH₂Cl₂ (3 x 50 mL) and the organic phase was concentrated. The residue was purified by a silica gel column chromatography to give hemiacetal trisaccharide intermediate as syrup. A solution of the above syrup, CCl₃CN (4 equiv) and DBU (0.4 equiv) in dry CH₂Cl₂ (5 mL) was stirred at rt for 2 h. The solvents were removed *in vacuo*. The residue was purified by a silica gel flash column chromatography to give trichloroacetimidate **19** (725 mg, 80%) as a white foam; ¹H NMR (400 MHz, CDCl₃) δ 3.84 (dd, 1 H, J<1, J 9.2 Hz, H-6a), 4.15 (dd, 1 H, J 6.3, J 11.0 Hz, H-6b), 4.30-4.37 (m, 2 H), 4.48-4.58 (m, 5 H), 4.73 (dd, 1 H, J 3.4, J 9.8 Hz, H-3), 5.10 (d, 1 H, J 1.2 Hz, H-1), 5.38-5.41 (m, 2 H, H-1, H-2), 5.69-5.73 (m, 2 H, H-2, H-3), 5.90-5.95 (m, 2 H), 6.01 (t, 1 H, J 10.8 Hz, H-4), 6.07 (t, 1 H, J 10.0 Hz, H-4), 6.12 (t, 1 H, J 10.0 Hz, H-4), 6.59 (d, 1 H, J 1.5 Hz, H-1), 7.00-8.13 (m, 50 H, Ph), 9.00 (s, 1 H, NH). Anal. Calcd for C₉₀H₇₂Cl₃NO₂₆: C, 63.96; H, 4.26; Found: C, 63.88; H, 4.24.

4. Preparation of allyl 2,3,4,6-tetra-*O*-benzoyl- α -D-mannopyranosyl-(1 \rightarrow 3)-2,4-di-*O*-benzoyl- α -D-mannopyranoside (**21**)

To a stirred solution of **2** (2 g, 2.55 mmol) in THF (50 mL) was added TBAF (800 mg, 2.55 mmol). The mixture was stirred at rt for 4 h, then evaporated to dryness (<

40 °C water bath) under reduced pressure. The residue was purified by a silica gel column chromatography to give **20** as a white solid (1.13 g, 66%). To a cooled solution (-15 °C) of **20** (1.062 g, 1.58 mmol) and **17** (1.23 g, 1.66 mmol) in dry CH_2Cl_2 (15 mL) was added TMSOTf (15 μL , 0.08 mmol), and the mixture was stirred at this temperature for 40 min, another portion of TMSOTf (250 μL) was added. The reaction was warmed up to rt and stirred for 4 h further, then concentrated. The residue was purified by a silica gel column chromatography to give **21** (1.276 g, 80%); ^1H NMR (CDCl_3) δ 2.89 (bs, H, OH), 3.75-3.80 (m, 2 H, 2 H-6), 4.00 (ddd, 1 H, H-5), 4.07 (ddd, 1 H, H-5'), 4.18-4.25 (m, 1 H, $\text{CH}_2=\text{CH-CH}_2$), 4.35 (dd, 1 H, $J_{5',6'}^{\text{a}}$ 3.6, $J_{6',6'}^{\text{a,b}}$ 12.3 Hz, H-6'a), 4.44-4.50 (m, 1 H, $\text{CH}_2=\text{CH-CH}_2$), 4.61 (dd, 1 H, $J_{5',6'}^{\text{b}}$ 2.4 Hz, H-6'b), 4.70 (dd, 1 H, $J_{2,3}$ 3.5, $J_{3,4}$ 9.8 Hz, H-3), 5.15 (d, 1 H, $J_{1,2}$ 1.4 Hz, H-1), 5.23-5.36 (m, 3 H, H-2 and $\text{CH}_2=\text{CH-CH}_2$), 5.41 (d, 1 H, $J_{1',2'}$ 1.7 Hz, H-1'), 5.65-5.69 (m, 2 H, H-2', H-3'), 5.72 (t, 1 H, $J_{3,4}$ 10.0 Hz, H-4), 5.89 (m, 1 H, $\text{CH}_2=\text{CH-CH}_2$), 6.02 (t, 1 H, $J_{3',4'}$ 10.0 Hz, H-4'), 7.19-8.25 (m, 30 H, Ph). Anal. Calcd for $\text{C}_{57}\text{H}_{50}\text{O}_{17}$: C, 67.99; H, 4.97. Found: C, 67.96; H, 4.99.

5. Preparation of allyl 2,3,4,6-tetra-*O*-benzoyl- α -D-mannopyranosyl-(1 \rightarrow 6)-[2,3,4,6-tetra-*O*-benzoyl- α -D-mannopyranosyl-(1 \rightarrow 3)]-2,4-di-*O*-benzoyl- α -D-mannopyranosyl-(1 \rightarrow 6)-[2,3,4,6-tetra-*O*-benzoyl- α -D-mannopyranosyl-(1 \rightarrow 3)]-2,4-di-*O*-benzoyl- α -D-mannopyranoside (**22**)

To a cooled solution (0 °C) of **19** (2 g, 1.18 mmol) and **21** (1.13 g, 1.12 mmol) in dry CH_2Cl_2 (15 mL) was added TMSOTf (20 μL). The mixture was stirred at this temperature for 2 h, then neutralized with Et_3N (2 drops), and concentrated. The residue was purified by a silica gel column chromatography to give **22** (2.42 g, 85%); ^1H NMR (CDCl_3) δ 3.44 (bd, 1 H, H-6), 3.82 (dd, 1 H, H-6), 4.01 (dd, 1 H, H-6), 4.14 (ddd, 1 H, H-5), 4.20-4.53 (m, 12 H), 4.58 (dd, 1 H, H-6), 4.67 (dd, 1 H, H-3), 4.73 (dd, 1 H, H-3), 4.78 (d, 1 H, H-1), 5.17-5.19 (m, 2 H, H-1 and one proton of $\text{CH}_2=\text{CH-CH}_2$), 5.21 (d, 1 H, H-1), 5.29-5.32 (m, 3 H, H-1, H-2, and one proton of $\text{CH}_2=\text{CH-CH}_2$), 5.37 (d, 1 H, H-1), 5.44 (dd, 1 H, H-2), 5.57 (dd, 1 H, H-2), 5.65 (dd, 1 H, H-3), 5.69-5.74 (m, 2 H, H-2, H-3), 5.82 (dd, 1 H, H-2), 5.85-6.01 (m, 4 H, H-3, 2 H-4, $\text{CH}_2=\text{CH-CH}_2$), 6.04 (t, 1 H, H-4), 6.07 (t, 1 H, H-4), 6.08 (t, 1 H, H-4), 7.18-

8.35 (m, 80 H, Ph). Anal. Calcd for $C_{145}H_{120}O_{42}$: C, 68.72; H, 4.74. Found: C, 68.79; H, 4.81.

6. Preparation of Octyl 2,4-di-*O*-acetyl-3-*O*-*tert*-butyldimethylsilyl- β -D-glucopyranoside (**23**)

A solution of **8** (1 g, 1.37 mmol) and $FeCl_3 \cdot 6H_2O$ (737 mg, 2.73 mmol) in CH_2Cl_2 (20 mL) was stirred at rt for 3 h. The reaction mixture was diluted with CH_2Cl_2 (30 mL), washed with water, and the organic phase was concentrated. Purification on silica gel column gave **23** as a syrup (602 mg, 90%); 1H NMR ($CDCl_3$) δ 0.04, 0.05 (2 s, 2 x 3 H, $Si(CH_3)_2$), 0.83 (s, 9 H, t-Bu), 0.88 (t, 3 H, CH_3), 1.12-1.32 (bs, 10 H, 5 CH_2), 1.52-1.55 (m, 2 H, CH_2), 2.08, 2.11 (2 s, 2 x 3 H, 2 CH_3CO), 3.36 (ddd, 1 H, H-5), 3.42 (dt, 1 H, one proton of OCH_2), 3.57 (dd, 1 H, $J_{5,6a}$ 5.2, $J_{6a,6b}$ 12.6 Hz, H-6a), 3.66 (dd, 1 H, $J_{5,6b}$ 2.4 Hz, H-6b), 3.82-3.89 (m, 2 H, $J_{2,3} = J_{3,4}$ = 9.1 Hz, H-3 and one proton of OCH_2), 4.36 (d, $J_{1,2}$ 8.1 Hz, H-1), 4.86 (t, 1 H, $J_{4,5}$ 9.3 Hz, H-4), 4.90 (dd, 1 H, H-2). Anal. Calcd for $C_{24}H_{46}O_8Si$: C, 58.78; H, 9.39. Found: C, 58.80; H, 9.37.

7. Preparation of Octyl 2,3,4,6-tetra-*O*-acetyl- β -D-glucopyranosyl-(1 \rightarrow 6)-2,4-di-*O*-acetyl- β -D-glucopyranoside (**25**)

To a cooled solution (0 °C) of **23** (1.4 g, 2.86 mmol) and **24** (1.48 g, 3.0 mmol) in anhydrous methylene chloride (20 mL) was added TMSOTf (20 μ L, 0.11 mmol). The mixture was stirred at this temperature for 1 h and then extra TFA (90% in water, 1 mL) was added. The mixture was stirred at rt for 4 h then concentrated. The residue was purified by a silica gel column chromatography to give **25** (1.52 g, 75%); 1H NMR ($CDCl_3$) δ 0.88 (t, 3 H, CH_3), 1.25-1.37 (m, 10 H, CH_2), 1.56-1.63 (m, 2 H, CH_2), 2.00, 2.03, 2.04, 2.10, 2.11, 2.12 (6 s, 6 x 3 H, CH_3CO), 3.46 (dt, 1 H, one proton of OCH_2), 3.57-3.68 (m, 3 H, $J_{5,6a}$ 1.8, $J_{6a,6b}$ 11.8 Hz, H-5,6a,6b), 3.70 (t, 1 H, $J_{2,3} = J_{3,4}$ = 9.3 Hz, H-3), 3.84-3.90 (m, 2 H, H-5' and one proton of OCH_2), 4.20 (dd, 1 H, $J_{5',6'a}$ = 4.3, $J_{6'a,6'b}$ 12.9 Hz, H-6'a), 4.22 (dd, 1 H, $J_{5',6'b}$ 2.7 Hz, H-6'b), 4.40 (d, 1 H, $J_{1,2}$ 7.9 Hz, H-1), 4.60 (d, 1 H, $J_{1',2'}$ 8.0 Hz, H-1'), 4.80 (t, 1 H, $J_{3,4} = J_{4,5}$ = 9.3 Hz, H-4), 4.82 (t, 1 H, $J_{2,3}$ 9.3 Hz, H-2), 4.99 (dd, 1 H, $J_{2,3}$ 9.5 Hz, H-2'), 5.08 (t, 1 H, $J_{3',4'} = J_{4',5'}$ = 9.5 Hz, H-4'), 5.18 (t, 1 H, H-3'). Anal. Calcd for $C_{32}H_{50}O_{17}$: C, 54.39; H, 7.08. Found: C, 54.33; H, 7.13.

8. Preparation of Octyl 2,4,6-tri-*O*-acetyl-3-*O*-benzyl- β -D-glucopyranosyl-(1 \rightarrow 3)-[2,3,4,6-tetra-*O*-acetyl- β -D-glucopyranosyl-(1 \rightarrow 6)]-2,4-di-*O*-acetyl- β -D-glucopyranoside (27)

To a cooled solution (0 °C) of **25** (1.2 g, 1.7 mmol) and **26** (962 mg, 1.78 mmol) in anhydrous methylene chloride (20 mL) was added TMSOTf (20 μ L, 0.11 mmol). The mixture was stirred at this temperature for 1 h, quenched by Et₃N (1 drop), then concentrated. The residue was purified by a silica gel column chromatography to give **27** (1.455 g, 79%); ¹H NMR (CDCl₃) δ 0.88 (t, 3 H, CH₃), 1.25-1.35 (bs, 10 H, 5 CH₂), 1.45-1.55 (m, 2 H, CH₂), 2.00, 2.02, 2.02, 2.03, 2.04, 2.06, 2.09, 2.09, 2.09 (7 s, 27 H, 9 CH₃CO), 3.40 (dt, 1 H, one proton of OCH₂), 3.55-3.68 (m, 5 H, H-5^B, H-5^C, H-3^A, H-6a^A, H-6b^A), 3.80-3.90 (m, 3 H, H-3^C, H-5^A, one proton of OCH₂), 4.03 (dd, 1 H, J 2.2, J 12.4 Hz, H-6a^B/H-6a^C), 4.10 (dd, 1 H, J 2.1, J 12.3 Hz, H-6a^C/H-6a^B), 4.25-4.32 (m, 3 H, J 8.1 Hz, H-1^A, H-6b^B, H-6b^C), 4.50 (d, J 8.1 Hz, H-1^C), 4.55 (s, 2 H, PhCH₂), 4.57 (d, 1 H, J 8.1 Hz, H-1^B), 4.69 (t, 1 H, J 9.7 Hz, H-4^A), 4.88-5.00 (m, 3 H, H-2^{A,B,C}), 5.06 (t, J 9.7 Hz, H-4^C), 5.09 (t, 1 H, J 9.7 Hz, H-4^B), 5.18 (t, 1 H, J 9.5, H-3^B), 7.21-7.33 (m, 5 H, Ph). Anal. Calcd for C₅₁H₇₂O₂₅: C, 56.46; H, 6.64. Found: C, 56.50; H, 6.60.

9. Preparation of Octyl 2,4,6-tri-*O*-acetyl- β -D-glucopyranosyl-(1 \rightarrow 3)-[2,3,4,6-tetra-*O*-acetyl- β -D-glucopyranosyl-(1 \rightarrow 6)]-2,4-di-*O*-acetyl- β -D-glucopyranoside (28)

Compound **27** (325 mg, 0.3 mmol) was dissolved in EtOAc (6 mL) and then a solution of NaBrO₃ (136 mg, 0.9 mmol) in water (3 mL) was added. To the well stirred two-phase system an aqueous solution of Na₂S₂O₄ (85% pure, 157 mg, dissolved in 6 mL water) was added dropwise over 10 min at rt. After completion of the reaction (TLC) the mixture was diluted with EtOAc and the organic phase was washed with aqueous sodium thiosulfate. The crude product was then purified by silica gel chromatography to give **28** (277 mg, 93%); ¹H NMR (CDCl₃) δ 0.88 (t, 3 H, CH₃), 1.25-1.35 (bs, 10 H, 5 CH₂), 1.45-1.55 (m, 2 H, CH₂), 2.00, 2.02, 2.02, 2.03, 2.08, 2.09, 2.10, 2.11 (8 s, 27 H, 9 CH₃CO), 2.50 (bs, 1 H, OH), 3.40 (dt, 1 H, one proton of OCH₂), 3.55-3.70 (m, 5 H, H-5^B, H-5^C, H-3^A, H-6a^A, H-6b^A), 3.80-3.90 (m, 3 H, H-3^C, H-5^A, one proton of OCH₂), 4.07 (dd, 1 H, J 2.2, J 12.3 Hz, H-6a^B/H-

6a^C), 4.11 (dd, 1 H, J 2.6, J 12.0 Hz, H-6a^C/H-6a^B), 4.27 (dd, 1 H, J 4.7 Hz, H-6b^B/H-6b^C), 4.30 (d, 1 H, J 8.2 Hz, H-1^A), 4.35 (dd, 1 H, J 4.8 Hz, H-6b^C/H-6b^B), 4.51 (d, J 8.0 Hz, H-1^C), 4.57 (d, 1 H, J 8.0 Hz, H-1^B), 4.70 (t, 1 H, J 9.6 Hz, H-4^A), 4.72 (t, 1 H, J 8.2 Hz, H-2^A), 4.88-5.00 (m, 3 H, H-2^{B,C}, H-4^C), 5.07 (t, J 9.6 Hz, H-4^B), 5.18 (t, 1 H, J 9.5, H-3^B). Anal. Calcd for C₄₄H₆₆O₂₅: C, 53.12; H, 6.64. Found: C, 53.10; H, 6.70.

10. Preparation of phenyl 2,4-di-*O*-acetyl-1-thio- β -D-glucopyranoside (29)

Compound **6** (3 g, 4.21 mmol) was dissolved into 90% aqueous TFA (15 mL) and the solution was stirred at rt for 4 h. Toluene (50 mL) was added and then the solvents were evaporated *in vacuo* to give a residue, which was purified by a silica gel column chromatography (petroleum ether-EtOAc, 1:1) to give **29** (1.36 g, 91%); ¹H NMR (CDCl₃) δ 1.95, 2.10 (2 s, 6 H, CH₃CO), 2.85 (bs, 2 H, 2 OH), 3.22-3.26 (m, 2 H, H-6a, H-6b), 3.50 (ddd, 1 H, J_{4,5} 9.6 Hz, H-5), 3.93 (t, 1 H, J_{2,3} 9.6 Hz, H-3), 4.62 (d, 1 H, J_{1,2} 8.8 Hz, H-1), 4.95 (t, 1 H, J_{3,4} 9.6 Hz, H-4), 5.05 (t, 1 H, H-2). Anal. Calcd for C₁₆H₂₀O₇S: C, 53.93; H, 5.62. Found: C, 53.85; H, 5.68.

11. Preparation of Octyl 2,3,4,6-tetra-*O*-acetyl- β -D-glucopyranosyl-(1 \rightarrow 3)-[2,3,4,6-tetra-*O*-acetyl- β -D-glucopyranosyl-(1 \rightarrow 6)]-2,4-di-*O*-acetyl- β -D-glucopyranosyl-(1 \rightarrow 3)-2,4,6-tri-*O*-acetyl- β -D-glucopyranosyl-(1 \rightarrow 3)-[2,3,4,6-tetra-*O*-acetyl- β -D-glucopyranosyl-(1 \rightarrow 6)]-2,4-di-*O*-acetyl- β -D-glucopyranoside (30)

To a cooled solution (0 °C) of **24** (280 mg, 0.57 mmol) and **29** (100 mg, 0.28 mmol) in anhydrous methylene chloride (10 mL) was added TMSOTf (10 μ L, 0.05 mmol). The mixture was stirred at this temperature for 1 h, then cooling the reaction temperature to -15 °C. To the above flask was added trisaccharide **28** (278 mg, 0.28 mmol), NIS (125 mg, 0.56 mmol) and TMSOTf (25 μ L, 0.14 mmol) sequentially. The reaction mixture was stirred at 0 °C for 2 h, quenched by Et₃N (2 drop), then concentrated. The residue was purified by a silica gel column chromatography to give **30** (267 mg, 50.2%) as a white foam; ¹H NMR (CDCl₃) δ 0.88 (t, 3 H), 1.24-1.27 (m, 10 H), 1.40-1.50 (m, 2 H), 1.94 (s, 3 H), 1.95 (s, 3 H), 1.96 (bs, 6 H), 1.98 (s, 3 H), 1.99 (s, 6 H), 2.01 (s, 9 H), 2.02 (s, 3 H), 2.03 (s, 3 H), 2.08 (s, 3 H), 2.09 (2 s, 6 H), 2.13 (s, 3 H), 2.14 (s, 3 H), 2.23 (s, 3 H), 2.24 (s, 3 H), 3.40 (dt, 1 H, one proton of OCH₂), 3.50-3.55 (m, 1 H), 3.56-3.72 (m, 6 H), 3.72-3.77 (m, 1 H), 3.78-3.91 (m, 5

H), 3.96 (dd, 1 H), 4.05 (dd, 1 H), 4.09-4.40 (m, 3 H), 4.43-4.58 (m, 6 H), 4.62-4.75 (m, 3 H), 4.86-4.94 (m, 2 H), 4.95-5.05 (m, 4 H), 5.10-5.22 (m, 6 H). Selected ^{13}C NMR (CDCl_3 , 100 MHz) δ 95.48, 99.95, 100.24, 100.38, 100.75, 100.89 (6 C-1), 168.55, 168.73, 168.81, 169.20 (2 C), 169.24, 169.28, 169.39, 169.44 (2 C), 170.13 (2 C), 170.20, 170.24, 170.49, 170.60, 170.63, 171.10, 171.17 (19 CH_3CO). Anal. Calcd for $\text{C}_{82}\text{H}_{116}\text{O}_{50}$: C, 51.79; H, 6.10. Found: C, 51.70; H, 6.12.